D-modules, perverse sheaves, and representation theory (Record no. 2400)

000 -LEADER
fixed length control field 01933nam a22002417a 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240927120013.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190226b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780817643638
040 ## - CATALOGING SOURCE
Transcribing agency Tata Book House
Original cataloging agency ICTS-TIFR
050 ## - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA179
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Ryoshi Hotta
245 ## - TITLE STATEMENT
Title D-modules, perverse sheaves, and representation theory
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Boston:
Name of publisher, distributor, etc. Birkhauser,
Date of publication, distribution, etc. [c2008]
300 ## - Physical Description
Pages: 407 p
490 ## - SERIES STATEMENT
Series statement Progress in Mathematics
Volume/sequential designation Vol. 236
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note PART I- D-Modules and Perverse Sheaves<br/>1. Preliminary Notions<br/>2. Coherent D-Modules<br/>3. Holonomic D-Modules <br/>4. Analytic D-Modules and the de Rham Functor<br/>5. Theory of Meromorphic Connections<br/>6. Regular Holonomic D-Modules<br/>7. Riemann–Hilbert Correspondence<br/>8. Perverse Sheaves<br/><br/>PART - II Representation Theory<br/>9. Algebraic Groups and Lie Algebras<br/>10. Conjugacy Classes of Semisimple Lie Algebras<br/>11. Representations of Lie Algebras and D-Modules<br/>12. Character Formula of HighestWeight Modules<br/>13. Hecke Algebras and Hodge Modules
520 ## - SUMMARY, ETC.
Summary, etc. D-modules continues to be an active area of stimulating research in such mathematical areas as algebra, analysis, differential equations, and representation theory.<br/>Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. Significant concepts and topics that have emerged over the last few decades are presented, including a treatment of the theory of holonomic D-modules, perverse sheaves, the all-important Riemann-Hilbert correspondence, Hodge modules, and the solution to the Kazhdan-Lusztig conjecture using D-module theory. --- summary provided by publisher
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Kiyoshi Takeuchi
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Toshiyuki Tanisaki
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://link.springer.com/book/10.1007/978-0-8176-4523-6#toc">https://link.springer.com/book/10.1007/978-0-8176-4523-6#toc</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Book
Holdings
Withdrawn status Lost status Damaged status Not for loan Collection code Home library Shelving location Date acquired Full call number Accession No. Koha item type
          ICTS Rack No 4 02/26/2019 QA179 01737 Book