The geometrical study of differential equations : (Record no. 28702)

000 -LEADER
fixed length control field 02310nmm a2200193Ia 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230306s9999||||xx |||||||||||||||||und||
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780821878750 (online)
245 #4 - TITLE STATEMENT
Title The geometrical study of differential equations :
Remainder of title NSFCBMS Conference on the Geometrical Study of Differential Equations, June 2025, 2000, Howard University, Washington, D.C.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Providence, R.I. :
Name of publisher, distributor, etc. American Mathematical Society,
Date of publication, distribution, etc. c2001
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (xvi, 205 p.)
490 ## - SERIES STATEMENT
Series statement Contemporary mathematics
Volume/sequential designation v. 285
International Standard Serial Number 10983627
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references.
505 ## - FORMATTED CONTENTS NOTE
Title An overview of Lie's linesphere correspondence ; Application of Lie group analysis to a mathematical model which describes HIV transmission ; Geometry and PDE on the Heisenberg group: a case study ; Invariant evolutions of curves and surfaces and completely integrable Hamiltonian systems ; On the fixed points of the Toda hierarchy ; Group invariant solutions in mathematical physics and differential geometry ; Discrete symmetries of differential equations ; Integrable geometric evolution equations for curves ; On integrability of evolution equations and representation theory ; Symmetry groups, nonlinear partial differential equations, and generalized functions ; Lie symmetries of differentialdifference equations ; On a variational complex for difference equations ; The invariant variational bicomplex ; On geometrically integrable equations and hierarchies of pseudospherical type ; Inductive construction of moving frames ; Orbit reduction of contact ideals ; About the local and formal geometry of PDE ; Open problems in symmetry analysis
Statement of responsibility R Milson ; V Torrisi and M C Nucci ; Richard Beals ; G Mari Beffa ; Barbara A Shipman ; I M Anderson M E Fels and C G Torre ; P E Hydon ; Thomas A Ivey ; Jan A Sanders and Jing Ping Wang ; Michael Oberguggenberger ; R Hernandez Heredero ; Elizabeth L Mansfield and Peter E Hydon ; Irina A Kogan and Peter J Olver ; Enrique G Reyes ; Irina A Kogan ; Vladimir Itskov ; Thierry Robart ; Peter A Clarkson and Elizabeth L Mansfield
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Differential equations
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Geometry, Differential
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Leslie Joshua A
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Robart Thierry P
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://www.ams.org/conm/285/">http://www.ams.org/conm/285/</a>
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Date acquired Barcode Date last seen Uniform Resource Identifier Price effective from Koha item type
      Accessible Online ICTS ICTS 03/06/2023 EBK21289 03/06/2023 https://doi.org/10.1090/conm/285 03/06/2023 electronic book