000 -LEADER |
fixed length control field |
03092nmm a2200181Ia 4500 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
230306s9999||||xx |||||||||||||||||und|| |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9780821880968 (online) |
245 #0 - TITLE STATEMENT |
Title |
Jack, HallLittlewood, and Macdonald polynomials : |
Remainder of title |
Workshop on Jack, HallLittlewood, and Macdonald Polynomials, September 2326, 2003, ICMS, Edinburgh, United Kingdom |
260 ## - PUBLICATION, DISTRIBUTION, ETC. |
Place of publication, distribution, etc. |
Providence, R.I. : |
Name of publisher, distributor, etc. |
American Mathematical Society, |
Date of publication, distribution, etc. |
c2006 |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource (xix, 360 p. : ill.) |
490 ## - SERIES STATEMENT |
Series statement |
Contemporary mathematics |
Volume/sequential designation |
v. 417 |
International Standard Serial Number |
10983627 |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc. note |
Includes bibliographical references. |
505 ## - FORMATTED CONTENTS NOTE |
Title |
Henry Jack 19171978 ; Philip Hall ; Dudley Ernest Littlewood ; Ian Macdonald ; I. G. Macdonald The algebra of partitions (This article is not available individually due to permission restrictions ; to view, see the <a href = "conm417.pdf">full volume PDF<a>.) ; On certain symmetric functions ; A class of symmetric polynomials with a parameter ; A class of polynomials in search of a definition, or the symmetric group parametrized ; Commentary on the previous paper: "A class of polynomials in search of a definition, or the symmetric group parametrized" [in Jack, HallLittlewood and Macdonald polynomials, 75106, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006 ; MR2284122] by H. Jack ; First letter from Henry Jack to G. de B. Robinson ; Wellpoised Macdonald functions |
-- |
_\lambda |
-- |
and Jackson coefficients |
-- |
omega _\lambda |
-- |
on |
-- |
C_n |
-- |
; Asymptotics of multivariate orthogonal polynomials with hyperoctahedral symmetry ; Quantization, orbifold cohomology, and Cherednik algebras ; Triple groups and Cherednik algebras ; Coincident root loci and Jack and Macdonald polynomials for special values of the parameters ; Lowering and raising operators for some special orthogonal polynomials ; Factorization of symmetric polynomials ; A method to derive explicit formulas for an elliptic generalization of the Jack polynomials ; A short proof of generalized JacobiTrudi expansions for Macdonald polynomials ; Limits of |
-- |
C |
Title |
ype orthogonal polynomials as the number of variables goes to infinity ; A differenceintegral representation of Koornwinder polynomials ; Explicit computation of the |
-- |
,t |
-- |
ittlewoodRichardson coefficients ; A multiparameter summation formula for Riemann theta functions ; Vadim Borisovich Kuznetsov 19632005 |
Statement of responsibility |
B D Sleeman ; Alun O Morris ; Alun O Morris ; Alun O Morris ; D E Littlewood ; Henry Jack ; Henry Jack ; I G Macdonald ; Henry Jack ; Hasan Coskun and Robert A Gustafson ; J F van Diejen ; Pavel Etingof and Alexei Oblomkov ; Bogdan Ion and Siddhartha Sahi ; M Kasatani T Miwa A N Sergeev and A P Veselov ; Tom H Koornwinder ; Vadim B Kuznetsov and Evgeny K Sklyanin ; Edwin Langmann ; Michel Lassalle ; Andrei Okounkov and Grigori Olshanski ; Eric M Rains ; Michael Schlosser ; Vyacheslav P Spiridonov ; Evgeny Sklyanin and Brian D Sleeman |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name entry element |
Orthogonal polynomials |
700 ## - ADDED ENTRY--PERSONAL NAME |
Personal name |
Kuznetsov Vadim B |
700 ## - ADDED ENTRY--PERSONAL NAME |
Personal name |
Sahi Siddhartha |
856 ## - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
<a href="http://www.ams.org/conm/417/">http://www.ams.org/conm/417/</a> |