Advanced mathematical methods for scientists and engineers: asymptotic methods and perturbation theory (Record no. 3)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 02032nam a2200217Ia 4500 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | OSt |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20230831121526.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 170804s2010 xx 000 0 und d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781441931870 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | ICTS |
050 ## - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | QA371 |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Carl M. Bender |
245 ## - TITLE STATEMENT | |
Title | Advanced mathematical methods for scientists and engineers: asymptotic methods and perturbation theory |
250 ## - EDITION STATEMENT | |
Edition statement | 2nd ed. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Name of publisher, distributor, etc. | Springer, |
Date of publication, distribution, etc. | c2010 |
Place of publication, distribution, etc. | New York: |
300 ## - Physical Description | |
Pages: | xiv, 593p. |
520 ## - SUMMARY, ETC. | |
Summary, etc. | The triumphant vindication of bold theories-are these not the pride and justification of our life's work? -Sherlock Holmes, The Valley of Fear Sir Arthur Conan Doyle The main purpose of our book is to present and explain mathematical methods for obtaining approximate analytical solutions to differential and difference equations that cannot be solved exactly. Our objective is to help young and also establiShed scientists and engineers to build the skills necessary to analyze equations that they encounter in their work. Our presentation is aimed at developing the insights and techniques that are most useful for attacking new problems. We do not emphasize special methods and tricks which work only for the classical transcendental functions; we do not dwell on equations whose exact solutions are known. The mathematical methods discussed in this book are known collectively asĀ asymptotic and perturbative analysis. These are the most useful and powerful methods for finding approximate solutions to equations, but they are difficult to justify rigorously. Thus, we concentrate on the most fruitful aspect of applied analysis; namely, obtaining the answer. We stress care but not rigor. To explain our approach, we compare our goals with those of a freshman calculus course. A beginning calculus course is considered successful if the students have learned how to solve problems using calculus. (Source: publisher) |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Steven A. Orszag |
856 ## - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://link.springer.com/book/10.1007/978-1-4757-3069-2">https://link.springer.com/book/10.1007/978-1-4757-3069-2</a> |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | |
Koha item type | Book |
Withdrawn status | Lost status | Damaged status | Not for loan | Collection code | Home library | Shelving location | Date acquired | Full call number | Accession No. | Koha item type | Uniform Resource Identifier |
---|---|---|---|---|---|---|---|---|---|---|---|
Mathematics | ICTS | Rack No 6 | 03/13/2012 | QA371 | 00003 | Book | |||||
Accessible Online | Mathematics | ICTS | 01/25/2023 | EBK1832 | electronic book | https://doi.org/10.1007/978-1-4757-3069-2 |