000 01916nam a22001937a 4500
003 OSt
005 20240829111354.0
008 180719b ||||| |||| 00| 0 eng d
020 _a9783540421955
040 _aICTS-TIFR
050 _aQA3
_b01213
100 _aSilva, Ana Cannas da
245 _aLectures on symplectic geometry
260 _aGerman:
_bSpringer,
_c[c2001]
300 _a247 p.
505 _aI Symplectic Manifolds 1. Symplectic Forms 2. Symplectic Form on the Cotangent Bundle II Symplectomorphisms 3. Lagrangian Submanifolds 4. Generating Functions 5. Recurrence III Local Forms 6. Preparation for the Local Theory 7. Moser Theorems 8. Darboux-Moser-Weinstein Theory 9. Weinstein Tubular Neighborhood Theorem IV Contact Manifolds 10. Contact Forms 11. Contact Dynamics V Compatible Almost Complex Structures 12. Almost Complex Structures 13. Compatible Triples 14. Dolbeault Theory VI Kähler Manifolds 15. Complex Manifolds 16. Kähler Forms 17. Compact Kähler Manifolds VII Hamiltonian Mechanics 18. Hamiltonian Vector Fields 19. Variational Principles 20. Legendre Transform VIII Moment Maps 21. Actions 22. Hamiltonian Actions IX Symplectic Reduction 23. The Marsden-Weinstein-Meyer Theorem 24. Reduction X Moment Maps Revisited 25. Moment Map in Gauge Theory 26. Existence and Uniqueness of Moment Maps 27. Convexity XI Symplectic Toric Manifolds 28. Classification of Symplectic Toric Manifolds 29. Delzant Construction 30. Duistermaat-Heckman Theorems
520 _aThis text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding.
942 _2lcc
_cBK
999 _c1934
_d1934