000 01365nmm a2200193Ia 4500
008 230306s9999||||xx |||||||||||||||||und||
020 _a9780821834008 (online)
100 _aHobby, David Charles
245 4 _aThe structure of finite algebras
260 _aProvidence, R.I. :
_bAmerican Mathematical Society,
_cc1988
300 _a1 online resource (xi, 203 p.)
490 _aContemporary mathematics
_vv. 76
_x10983627
500 _aIncludes indexes.
504 _aBibliography: p. 193194.
505 _tIntroduction ; Chapter 0: Basic concepts and notation ; Chapter 1: Tight lattices ; Chapter 2: Tame quotients ; Chapter 3: Abelian and solvable algebras ; Chapter 4: The structure of minimal algebras ; Chapter 5: The types of tame quotients ; Chapter 6: Labeled congruence lattices ; Chapter 7: Solvability and semidistributivity ; Chapter 8: Congruence modular varieties ; Chapter 9: Mal
_\prime
_cev classification and omitting types ; Chapter 10: Residually small varieties ; Chapter 11: Decidable varieties ; Chapter 12: Free spectra ; Chapter 13: Tame algebras and Eminimal algebras ; Chapter 14: Simple algebras in varieties ; Problems ; An appendix added in July, 1996 ; Bibliography ; Added in July, 1996 ; Index to Terms ; Index of Notation
650 _aAlgebra, Universal
700 _aMcKenzie Ralph
856 _uhttp://www.ams.org/conm/076/
999 _c28491
_d28491