000 | 03116nmm a2200217Ia 4500 | ||
---|---|---|---|
008 | 230306s9999||||xx |||||||||||||||||und|| | ||
020 | _a9780821878385 (online) | ||
245 | 0 |
_aRecent developments in quantum affine algebras and related topics : _brepresentations of affine and quantum affine algebras and their applications, North Carolina State University, May 2124, 1998 |
|
260 |
_aProvidence, R.I. : _bAmerican Mathematical Society, _cc1999 |
||
300 | _a1 online resource (ix, 469 p.) | ||
490 |
_aContemporary mathematics _vv. 248 _x10983627 |
||
504 | _aIncludes bibliographical references. | ||
505 |
_tThe polynomial behavior of weight multiplicities for classical simple Lie algebras and classical affine KacMoody algebras ; A note on embeddings of some Lie algebras defined by matrices ; Principal realization for the extended affine Lie algebra of type _\rm sl_2 _ with coordinates in a simple quantum torus with two generators ; Monomial bases of quantized enveloping algebras ; Quantized _W _algebra of _\mathfrak sl(2,1) _: a construction from the quantization of screening operators ; Affine algebras and nonperturbative symmetries in superstring theory ; Automorphism groups and twisted modules for lattice vertex operator algebras ; Truncated meanders ; The _q _characters of representations of quantum affine algebras and deformations of _\scr W _algebras ; Melzer's identities revisited ; Automorphisms of lattice type vertex operator algebras and variations, a survey ; Remarks on fermionic formula ; _q _vertex operators for quantum affine algebras ; Homology of certain truncated Lie algebras ; Vertex operator algebras and the zeta function ; On _\bf Z _graded associative algebras and their _\bf N _graded modules ; An _A _form technique of quantum deformations ; Determinant formula for the solutions of the quantum KnizhnikZamolodchikov equation with _\vert q\vert =1 _ ; Functorial properties of the hypergeometric map ; Polyhedral realizations of crystal bases and braidtype isomorphisms ; Meromorphic tensor categories, quantum affine and chiral algebras. I ; Dual pairs and infinite dimensional Lie algebras _rGeorgia Benkart SeokJin Kang Hyeonmi Lee and DongUy Shin ; Stephen Berman and Shaobin Tan ; Stephen Berman and Jacek Szmigielski ; Vyjayanthi Chari and Nanhua Xi ; Jintai Ding and Boris Feigin ; L Dolan ; Chongying Dong and Kiyokazu Nagatomo ; P Di Francesco ; Edward Frenkel and Nicolai Reshetikhin ; Omar Foda and Trevor A Welsh ; Robert L Griess Jr ; G Hatayama A Kuniba M Okado T Takagi and Y Yamada ; Naihuan Jing and Kailash C Misra ; Shrawan Kumar ; J Lepowsky ; Haisheng Li and Shuqin Wang ; Duncan J Melville ; Tetsuji Miwa and Yoshihiro Takeyama ; E Mukhin and A Varchenko ; Toshiki Nakashima ; Yan Soibelman ; Weiqiang Wang |
||
650 | _aAffine algebraic groups | ||
650 | _aRepresentations of algebras | ||
650 | _aRepresentations of Lie algebras | ||
650 | _aRepresentations of quantum groups | ||
700 | _aJing Naihuan | ||
700 | _aMisra Kailash C | ||
856 | _uhttp://www.ams.org/conm/248/ | ||
999 |
_c28665 _d28665 |