000 | 03505nmm a2200229Ia 4500 | ||
---|---|---|---|
008 | 230306s9999||||xx |||||||||||||||||und|| | ||
020 | _a9780821881965 (online) | ||
245 | 0 |
_aGems in experimental mathematics : _bAMS Special Session, Experimental Mathematics, January 5, 2009, Washington, DC |
|
260 |
_aProvidence, R.I. : _bAmerican Mathematical Society, _cc2010 |
||
300 | _a1 online resource (vii, 413 p. : ill.) | ||
490 |
_aContemporary mathematics _vv. 517 _x10983627 |
||
500 | _aThis collection [of papers] is a continuation of Tapas in experimental mathematics, volume 457 [Contemporary Mathematics series]Preface. | ||
504 | _aIncludes bibliographical references. | ||
505 |
_tThe art of finding CalabiYau differential equations. Dedicated to the 90th birthday of Lars Garding ; A note on a question due to A. Garsia ; Experimental computation with oscillatory integrals ; Experimental mathematics and mathematical physics ; An extension of the parallel Risch algorithm ; Appell polynomials and their zero attractors ; Congruences for Stirling numbers of the second kind ; Expressions for harmonic number exponential generating functions ; Theory of logrational integrals ; A new algorithm for the recursion of hypergeometric multisums with improved universal denominator ; The method of brackets. Part 2: examples and applications ; History of the formulas and algorithms for _\pi _ ; A matrix form of Ramanujantype series for _1\pi _ ; An algorithmic approach to the Mellin transform method ; Eliminating human insight: an algorithmic proof of Stembridge's TSPP theorem ; Towards the Koch snowflake fractal billiard: computer experiments and mathematical conjectures ; An experimental mathematics perspective on the old, and still open, question of when to stop? ; The distance to an irreducible polynomial ; Square roots of _2\times 2 _ matrices ; On a series of Ramanujan ; Finite analogs of Szemeredi's theorem ; Towards an automation of the circle method ; The greatest common divisor of _a^n1 _ and _b^n1 _ and the AilonRudnick conjecture ; Which partial sums of the Taylor series for _e _ are convergents to _e _? (and a link to the primes 2, 5, 13, 37, 463). Part II ; Experimentation at the frontiers of reality in Schubert calculus ; On _\rm Sp_4 _ modularity of PicardFuchs differential equations for CalabiYau threefolds _rGert Almkvist ; Tewodros Amdeberhan ; David H Bailey and Jonathan M Borwein ; David H Bailey Jonathan M Borwein David Broadhurst and Wadim Zudilin ; Stefan T Boettner ; Robert P Boyer and William M Y Goh ; OYeat Chan and Dante Manna ; Mark W Coffey ; Richard E Crandall ; Stavros Garoufalidis and Xinyu Sun ; Ivan Gonzalez Victor H Moll and Armin Straub ; Jesus Guillera ; Jesus Guillera ; Karen Kohl and Flavia Stan ; Christoph Koutschan ; Michel L Lapidus and Robert G Niemeyer ; Luis A Medina and Doron Zeilberger ; Michael J Mossinghoff ; Sam Northshield ; Olivier Oloa ; Paul Raff and Doron Zeilberger ; Andrew V Sills ; Joseph H Silverman ; Jonathan Sondow and Kyle Schalm ; Christopher Hillar Luis GarciaPuente Abraham Martin del Campo James Ruffo Zach Teitler Stephen L Johnson and Frank Sottile ; Yifan Yang and Wadim Zudilin |
||
650 | _aCombinatorial analysis | ||
650 | _aExperimental mathematics | ||
650 | _aNumber theory | ||
700 | _aAmdeberhan Tewodros | ||
700 | _aMedina Luis A | ||
700 | _aMoll Victor H | ||
856 | _uhttp://www.ams.org/conm/517/ | ||
999 |
_c28934 _d28934 |